Transformer Assessment and Case Studies

Carl Pankratz Senior Principal Engineer

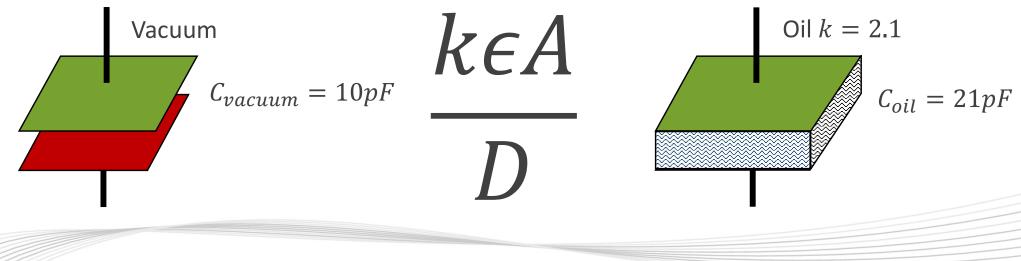
- Founded in 1920 by Frank Doble
- First Doble Conference held in 1934
- Headquarters in Marlborough, MA
- 300 Employees in 15 Countries
- 85 Representatives & Distributors Worldwide
- Acquired in 2007 by ESCO Technologies based in St. Louis, MO
- Doble Products & Services used by over 90% of US & Canada Power Utilities, over 500 client companies

- Members of an Extensive Global Power Community
- Over 500 Doble Client Companies Worldwide
- Thousands of Power Industry Professionals
- Two annual meetings
 - Fall Committee meetings
 - Spring International Client Conference

Insulation Evaluation Capacitance, Watt Losses and Power Factor

Insulation Capacitance

Insulation Evaluation – Capacitance Modeling


- By controlling a few physical features of these two conducting plates, size, space between them the dielectric filling the space we can dictate or design a capacitance measured in Farads
- Changes in the area of the plates and the distance and dielectric between the plates results in a capacitance change

FA

Insulation Evaluation – Capacitor Dielectric

- The dielectric materials filling the void between the plates also changes the capacitance
- This medium filling the void will increase the capacitance by a factor which we call the mediums Dielectric Constant(k).

Capacitor and Dielectrics

- Change in capacitance is always going to be a physical change
- Change in Area

8

- Change in Orientation or Distance
- Change in Dielectric Material

Material **Dielectric Constant** Vacuum 1.0 Air 1.000549 SF6 Gas 2.5 5.4 Mica Dry Paper 2 Porcelain 7 Oil 2.2 Silicone Fluid 2.75 Water (20° C) 80

Dielectric Losses

Dielectric Losses - Terminology

- Insulation vs. Dielectric
 - Insulation
 - Insulation is a generic term stating the material or combination of materials which resist the flow of electricity (very low current).
 - Dielectric
 - A Dielectric while resisting the flow of electricity it also provides the environment for the creation of an electric field
 - The measurable properties include; Capacitance, Dielectric Constant, Loss (heat), Absorption Rate and Dielectric Strength or Breakdown.

Dielectric Losses – Attributes

- In general, a low loss or a lower loss dielectric is a better insulation system.
- A large insulation system will have higher losses than a smaller insulation system in the same condition, due to a larger volume of insulation
- As the insulation deteriorates, the resistance decreases allowing the resistive current to increase, resulting in a watts increase.
- Without previous test data from that equipment or identical equipment it is difficult to make an accurate diagnosis

Dielectric Losses – Insulating/Dielectric Materials

Gaseous:	Liquid:	Solid:
High Vacuum	Mineral Oil	Cellulose
Air	Silicone Oil	Porcelain
Sulfur Hexafluoride	Distilled Water	Polymers
(SF_6)		Resins

Power Factor

Power Factor Definition

- What is a Power Factor/Dissipation Factor/Tangent Delta Test?
 - IEEE Definition of Power Factor is the cosine of the phase angle between a sinusoidal voltage applied across a dielectric (or combination of dielectrics) and the resulting current through the dielectric system.
 - Overall assessment of the condition and efficiency of the insulation
 - AC high voltage low current measurement

Power Factor Calculation

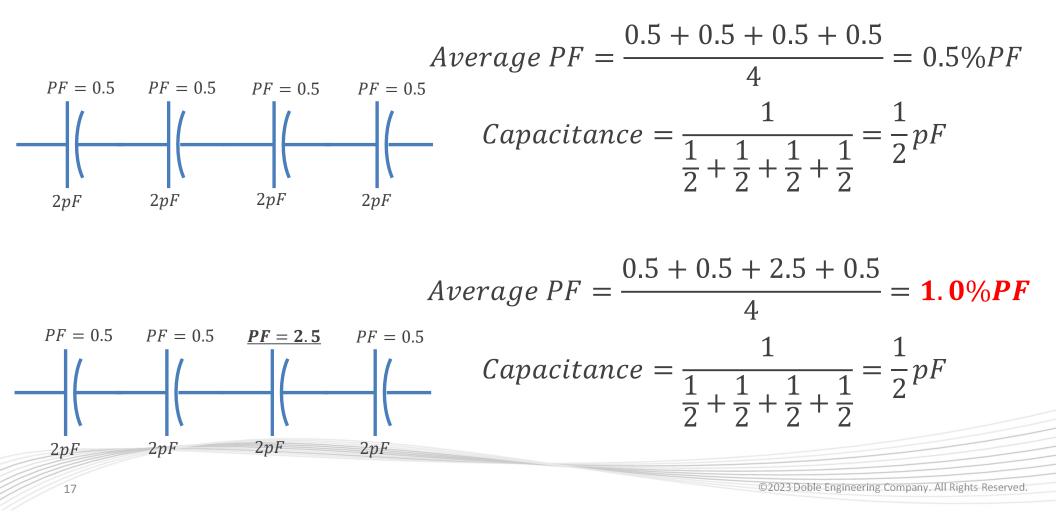
• How do we calculate Power Factor in the field? (10kV equivalent)

• Power Factor =
$$\frac{Watts}{E*I_T} * 100 = \frac{W}{10,000*0.001A} * 100 = \frac{W*100}{10mA} = \frac{W*10}{mA}$$

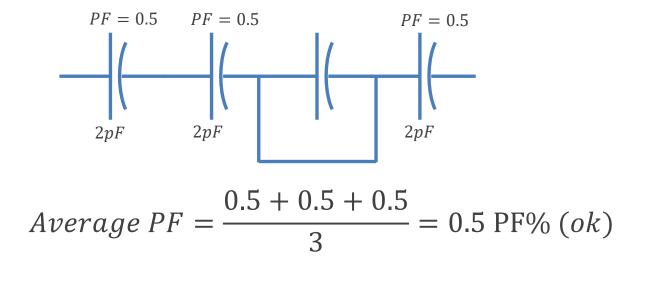
• Power Factor =
$$\left(\frac{.301*10}{7.011}\right) = .429\%$$

• 60Hz Capacitance = 265 * I(mA) = 265 * 7.011 = 1857.9

			Results			
V [kV]	I [mA]	Loss [W]	TCF [#]	PF [%6]	PF*TCF [%]	Capacitance [pF]
10.000	7.011	0.301	1.00	0.429	0.429	1857.9


Power Factor Attributes

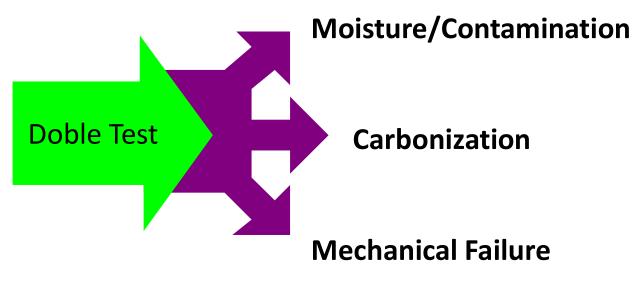
- Independent of voltage
- Independent of specimen size
- Temperature sensitive
 - Why correction factor applied to the measured power factor recorded for some types of apparatus.
- Performed at/near apparatus frequency
- Non-Destructive
- Not time dependent
- Power Factor results allow us to evaluate a piece equipment without prior test data



Power Factor – Detecting Defective Insulation

Power Factor – Detecting Capacitance Change

Capacitance = $\frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}} = 0.667 \, pFarad$ (133% increase from 0.5*pF*)

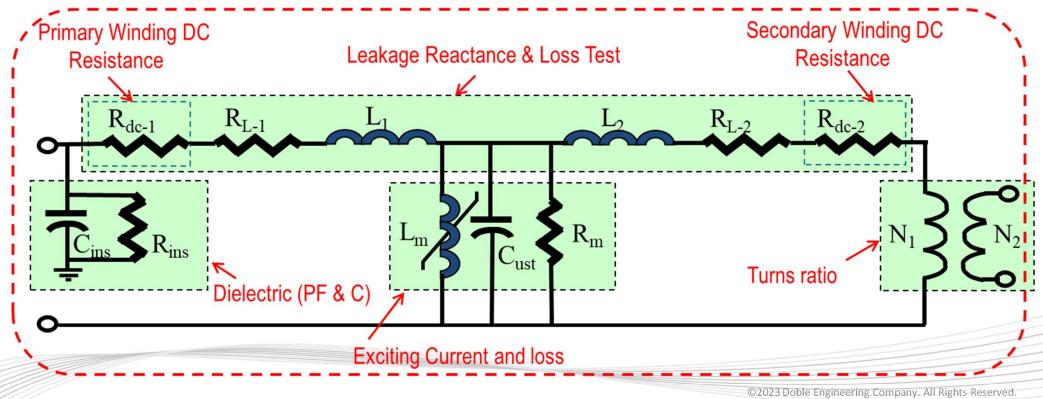

Capacitance, Watt Loss and %PF Summary

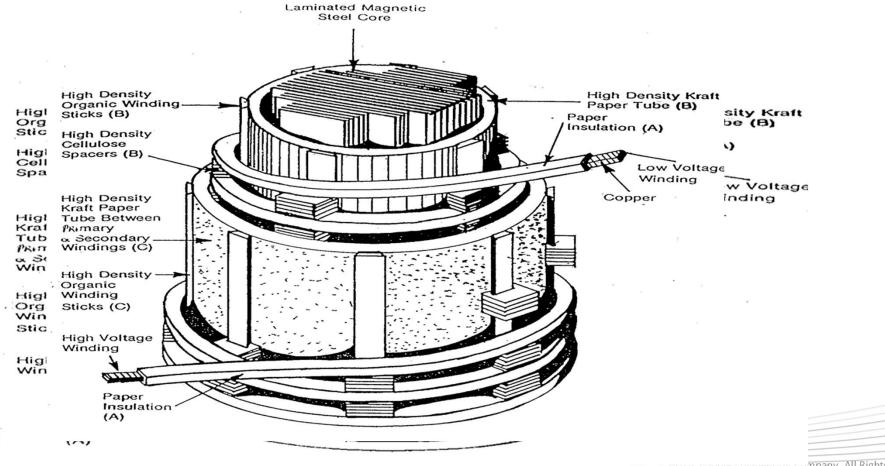
- Why do we test?
 - We test to identify contamination/degradation or physical change of insulating components before they lead to an electrical outage or failure!
- What can cause a change in Capacitance?
 - To have a change in Capacitance we must have a physical change occur which may or may not change our Power Factor
- What can cause a change in Power Factor?
 - A change in Power Factor is usually (not always) associated with some type of increase in resistive losses

Power and Distribution Transformers

The Doble dielectric-loss and power factor test as applied to transformers are the most comprehensive tests for insulation assessment.

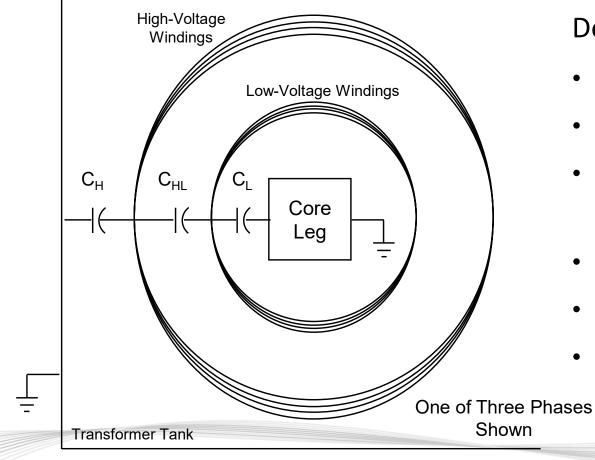
The test technique makes it possible to segregate the specimen into major components for more effective analysis of test results.


Transformer Design and Construction


Practical Transformer Model

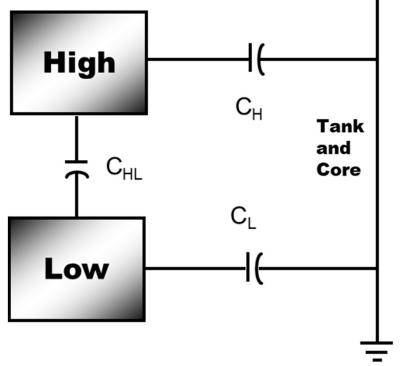
From an energy transfer perspective, the elements in this circuit represent
the imperfections within a transformer
 SFRA

Two-Winding Transformer Construction



Served.

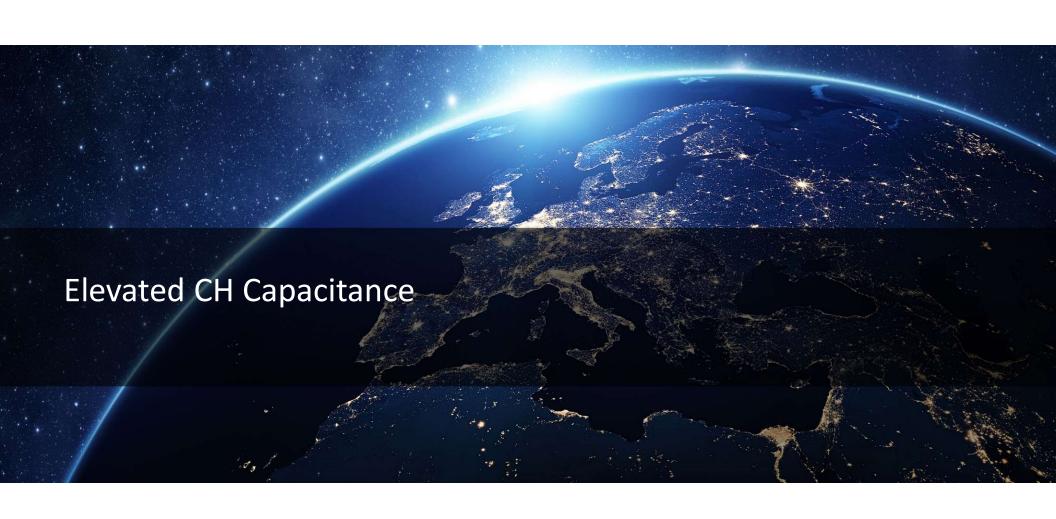
23


24

Doble testing yields:

- Overall (C_H, C_L, C_{HL})
- Bushings $(C_1, C_2, Hot Collar)$
- Oil (Field Power Factor, Laboratory DGA, etc.)
- Excitation Current Test
- Doble Turns Ratio Test
- Leakage Reactance

Dielectric Circuit: Two-Winding Transformer


C_H - Insulation between High-Voltage conductors and grounded Tank & Core (H Bushings-Winding Insulation-Structural Insulating Members-Oil)

C_L - Insulation between Low-Voltage conductors and grounded Tank & Core (X Bushings - Winding Insulation-Structural Insulating Members-Oil)

C_{HL} - Insulation between High- and Low-Voltage Windings (Winding Insulation-Barriers-Oil)

Case Studies

CH Capacitance Change

The CH capacitance increased by 8.5%.

In 2017 the initial capacitance was 2878 pf and in 2021 it's 3140 pf.

			Displa	y History for	Test Row:				2
	Setup				Results				Ratir
Date	Test kV	V [kV]	I [mA]	Loss [W]	TOF [#]	PF [%]	PF*TCF [%]	Capacitance [pF]	Ask FRANK™
3/4/2021	10.000	10.000	11.838	0.315	0.99	0.267	0.265	3140.2	🚸 Deteriorated
2/9/2017	10.000	10.003	10.851	0,348	1.00	0.320	0.319	2878.4	🛕 Investigate

CH Capacitance Change

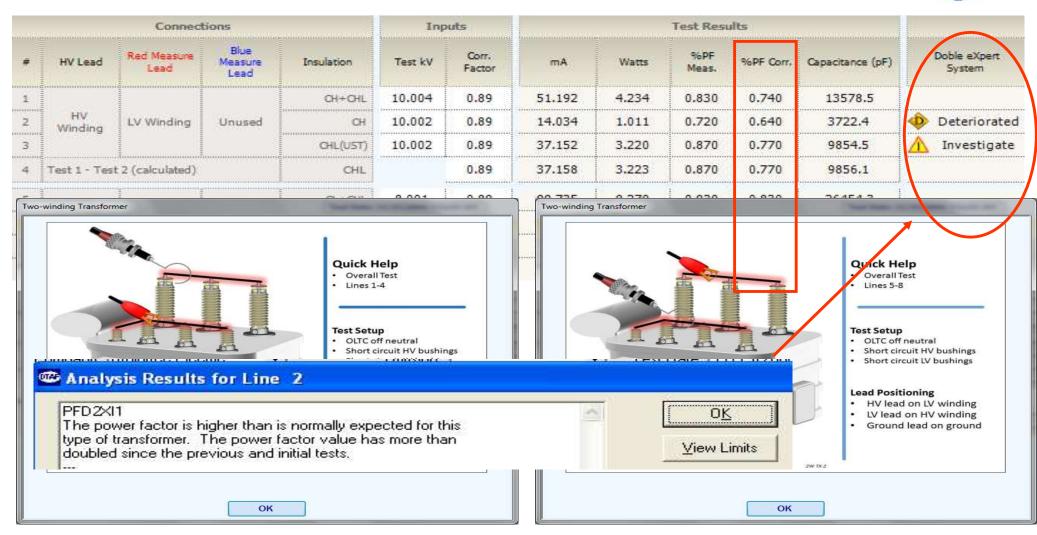
- CL, CHL- no issues
- Bushings, Excitation, Winding Resistance, Insulation Resistance, TTR- no issue
- The initial test was performed in 2017 and allowed the C1 and C2 to be tested on the H0 bushing.
- In 2021 the test tap was covered by the CT's and only a hot collar was performed on the H0 bushing.

CH Capacitance Change

• In this case a picture is worth a thousand words.

CH Capacitance Increase

- The external CT's encircling the H0 bushing will affect the capacitance in this case by 262 pf.
- So now a value is available with and without the CT in place for future testing evaluations.
 - Initial tests and factory results should compare



Overall PF% November 2006

		Connect	tions		Inp	uts			Test Res	ılts	
*	HV Lead	Red Measure Lead	Blue Measure Lead	Insulation	Test kV	Corr. Factor	mA	Watts	%PF Meas.	%PF Corr.	Capacitance (pF)
1		Commission		CH+CHL	10.004	0.89	51.192	4.234	0.830	0.740	13578.5
2	HV Winding	LV Winding	Unused	Ю	10.002	0.89	14.034	1.011	0.720	0.640	3722.4
3				CHL(UST)	10.002	0.89	37.152	3.220	0.870	0.770	9854.5
4	Test 1 - Test	2 (calculated)		CHL		0.89	37.158	3.223	0.870	0.770	9856.1
5				CL+CHL	8.001	0.89	99.735	9.270	0.930	0.830	26454.3
6	LV Winding	HV Winding	Unused	Q.	8.001	0.89	62.570	6.080	0.970	0.860	16596.3
7	c			CHL(UST)	8.001	0.89	37.154	3.179	0.860	0.770	985 <mark>4.</mark> 9
8	Test 5 - Test	6 (calculated)		CHL		0.89	37.165	3.190	0.860	0.770	9858.0

Capacitance PF% November 2006

History of C_H , C_{HL} and C_L

 C_{HL}

Ch	t Row:	Tes	play History fo	Dis							
Rati	1	-			Results			outs	Ing		
R	Doble eXpert System		Capacitance (pF)	% PF Corr.	% PF Meas.	Watts	mA	Corr. Factor	Test kV	Date	
	Deteriorated		3722.4	0.640	0.720	1.011	14.034	0.89	10.002	11/15/2006	
	Good	G	3699.4	0.430	0.430	0.600	13.960	0.99	10.000	4/27/1998	1
	Good	G	3604.0	0.490	0.510	0.700	13.600	0.96	10.000	9/10/1986	
hl	est Row: C	or T	oisplay History f	D							
Rat		-			Results			puts	In		
C	Doble eXpert System	100000	Capacitance (pF)	% PF Corr.	% PF Meas.	Watts	mA	Corr. Factor	Test kV	Date	
	Investigate		9854.5	0.770	0.870	3.220	37.152	0.89	10.002	11/15/2006	
	Good	6	9778.0	0.410	0.410	1.520	36.900	0.99	10.000	4/27/1998	
	Good	G	9594.0	0.370	0.390	1.400	36.000	0.96	10.000	9/10/1986	
101	est Row: Cl	or Te	isplay History fo	Di							
Rati					Results			puts	In		
0	Doble eXpert System		Capacitance (pF)	96 PF Corr.	96 PF Meas.	Watts	mA	Corr, Factor	Test kV	Date	
	Investigate		16596.3	0.860	0.970	6.080	62.570	0.89	8.001	11/15/2006	
	Deteriorated		16350.0	0.590	0.600	3.700	61.700	0.99	8.000	4/27/1998	
	Deteriorated	•	15900.0	0.640	0,670	4.000	60.000	0.96	8.000	9/10/1986	
[····	Good	6	16165.0	0.460	0.460	2.800	61.000	0.99	8.000	12/8/1982	

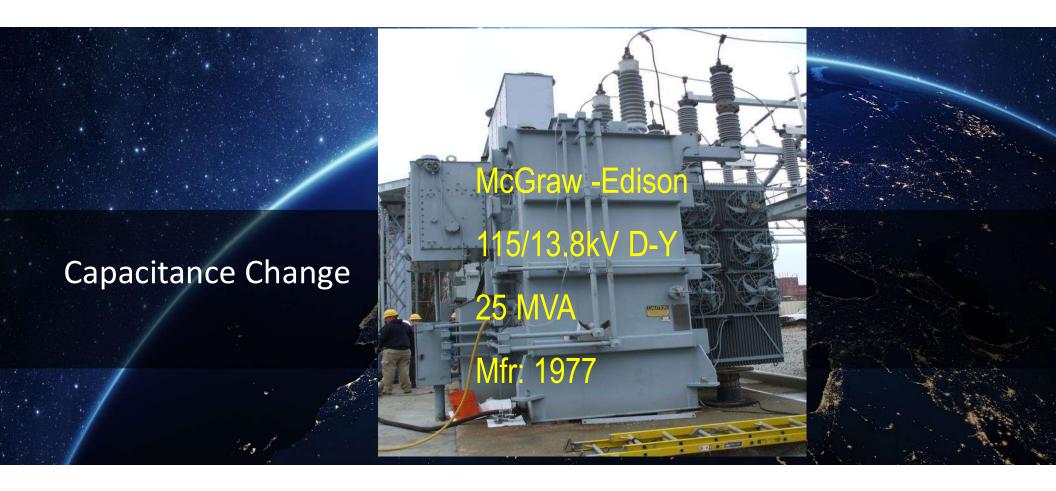
©2023 Doble Engineering Company. All Rights Reserved.

- The water content is difficult to assess without oil temperatures at time of sampling
- Latest sample indicated transformer very wet

Date Sampled	Top Oil Temp, °C	Moisture Content, ppm	% Relative Saturation
11/15/2006	30	29	35 (≤10%)
9/14/2005	Not given	36	-
11/16/2004	Not given	17	-
8/13/2004	Not given	26	-
10/29/1997	Not given	19	-

Oil Quality

• Some values indicate end of life for service aged, IEEE C57.106


Dielectric Breakdown	D877	43 (N/A)
Dielectric Breakdown	D1816	28 (>40kV)
Interfacial Tension	D971	24 (>25 dynes)
Neutralization No.	D974	0.16 (<0.1)
Power Factor 25C	D924	0.336 (0.5% max)
Power Factor 100C	D924	13.00 (5% max)
Specific Gravity	D1298	0.896 (N/A)

Field Test – December 2006

• After reclaiming oil and vacuum fill of transformer

							Overall	Test Setu	p			
		Connect	tions		Inp	uts			Test Resu	ults		
	HV Lead	Red Measure Lead	Blue Measure Lead	Insulation	Test kV	Corr. Factor	mA	Watts	%PF Meas.	%PF Corr.	Capacitance (pF)	Doble eXpert System
				CH+CHL	10.000	0.98	51.234	1.713	0.330	0.320	13590.0	-
	HV Winding	LV Winding	Unused	CH	10.000	0.98	14.061	0.505	0.360	0.350	3729.7	G Good
				CHL(UST)	10.000	0.98	37.152	1.215	0.330	0.320	9854.7	G Good
Т	fest 1 - Te	st 2 (calculated)		CHL		0.98	37.173	1.208	0.320	0.310	9860.3	
				CL+CHL	8.001	0.98	99.075	4.413	0.450	0.440	26280.0	
L	V Winding	HV Winding	Unused	CL.	8.001	0.98	61.912	3.222	0.520	0.510	16422.0	🛕 Investigate
	DXS - D	oble Expert Sy	stem					1.193	0.320	0.310	9854.6	
COMMUNIC.	#		9	Ratings, Detai	ils		Í.	■ 1.191	0.320	0.310	9858.0	G Good
	2	result, however compared to t error in the tes All values are Limit 1 For 230 and .7% for a	r it does com he limit. This st procedures acceptable.) kV and belo "D".	ector value does pare with the init may reflect recer of the previous w, the power fac ector limits are .4	ial test resu nt repair or r test. If not, tor limits ar	lt and is go naintenance retest in or e .5% for a	od a, or an ne year. "G"					
-	3	%PFG<2XP result, howeve compared to t	The power fa r it does com he limit. This	octor value does pare with the init may reflect recer of the previous	not compar ial test resu nt repair or r	e to the pre It and is go naintenance	od e, or an	•		©2023	3 Doble Engineering	Company. All Rights Res

Test History

History for O	verall Test	t	C _H Histo	ry	Disp	lay History	for Test Row:				2		
	In	puts			Results		_			Rating	ß		
Date	Test kV	Corr. Facto	or mA	Watts	PF (%)	PF Corr. (%)	Capacitance (pF)		Ask FRANK**		Manual		Notes
4/17/2015	10.000	1.00	10.492	0.597	0.569	0.568	2783.1	•	Deteriorated		Unrated	U	
4/6/2015	10.000	0.99	10.461	0.511	0.490	0.490	2774.7	G	Good		Unrated	U	
10/6/2005	10.000	0.99	10.550	0.527	0.500	0.500	2800.0	G	Good	•••	Unrated	U	

		(C _u Histo	rv	Disp	lay History	for Test Row:				3		
	In	puts		y	Results					Rating	js		
Date	Test kV	Corr. Factor	mA	Watts	PF (%)	PF Corr. (%)	Capacitance (pF)		Ask FRANK***		Manual		Notes
4/17/2015	10.000	1.00	9.121	0.233	0.255	0.255	2419.3	G	Good		Unrated	U	
4/6/2015	10.000	0.99	9.122	0.230	0.250	0.250	2419.7	6	Good	•••	Unrated	U	
10/6/2005	10.000	0.99	9.269	0.267	0.290	0.290	2458.0	6	Good		Unrated	U	

	In	puts	C _L Histor	у	esults			Ratin	gs	
Date	Test kV	Corr. Facto	or mA	Watts	PF (%)	PF Corr. (%)	Capacitance (pF)	Ask FRANK™	Manual	Notes
4/17/2015	10.000	1.00	31.701	1.199	0.378	0.378	8408.9	Deteriorated	Unrated U	
4/6/2015	10.000	0.99	31.699	1.145	0.360	0.360	8408.3	🚸 Deteriorated	Unrated U	
10/6/2005	10.000	0.99	35.440	1.514	0.430	0.430	9401.0	G Good	Unrated U	

CL Capacitance decrease

- Overall winding capacitance C_L changed by over 10%
- This is extremely significant A show stopper
- But wait a historic review of the bushings yielded...

Capacitance Change Due to Bushings Replacement

Winding

Bushing Detail - Replaced

Designation

Required for Expert System and Temperature Correction

Replaced

	Type		Rated kV		**************************************	INTERNET AND INTERNET AND	
Manufacturer				C1	2	CI	C2
ABB (ASEA-Brown Boveri)	0+C	-	25.0 kV	0.290 %	0.290 %	600.0 pF	8
ushing Detail - X1							
ushing Detail - X1 Designation	X1		Winding	Low	Serial#	05F021	5-103
Designation			Winding	Low] Serial#	05F021	5-103
Designation	rature Corr				Serial#	05F021 Capacitar	
Bushing Detail - X1 Designation equired for Expert System and Tempe Manufacturer			Winding Rated kV		,		

- Thank you for your opportunity..
- Questions?

©2023 Doble Engineering Company. All Rights Reserved.

43