FirstEnergy

Protection Settings Automation and Standardization

Transmission Protection

Josh Counihan

Energy Association of PA – Electrical Equipment and Protection Committee Meeting April 25, 2023

Overview

NERC Reliability Standard PRC-027

- <u>Title:</u> Coordination of Protection Systems for Performance During Faults
- <u>Purpose</u>: To maintain the coordination of Protection Systems installed to detect and isolate Faults on Bulk Electric System (BES) Elements, such that those Protection Systems operate in the intended sequence during Faults.
- Effective Date: April 1, 2021
- <u>Replaces</u>: Requirements in PRC-001 (coordination with others)
- Requires us to establish and follow a procedure for developing relay settings for BES elements.

Overview

FirstEnergy Transmission Protection "Tools and Templates" Team Formed

Purpose: To assist with adherence to the relay setting guidelines and philosophy in the "FirstEnergy Transmission Protection Settings Criteria" document, and to ensure that Protection Systems operate in the intended sequence during Faults in support of PRC-027, develop a collection of Relay Setting Calculation Tools and Standard RDB Templates, referred to as "tools" and "templates." The tools and templates are intended for use by protection engineers when developing new or revised Protection System settings for relays.

Energy Association of PA – Electrical Equipment and Protection Committee Meeting Ap

April 25, 2023

Relay Setting Calculation Tools & Standard RDB Templates

Calculation tools are a collection of Excel workbooks

- One calculation tool workbook per scheme and relay type (i.e. 2 Terminal Line-Micro, Low Impedance Diff-Bus-Micro, Primary & OA Diff Scheme-Transformer-Micro, etc.)
- Designed for most common relay schemes and the SEL relays found in FirstEnergy's Transmission Protection Standard Panel Specifications
- Some tools created for schemes that are still in-service using legacy electro-mechanical line, bus, and transformer relays

• Standard RDB templates are a collection of RDB files

- RDB templates are the receptacle for the protection settings exported from the completed relay setting calculation tools
- Created using FirstEnergy's standard protection specification SEL part numbers and approved firmware
- Contain standard, scheme specific settings (outputs, logic, event reporting, front panel settings)

Relay Setting Calculation Tools & Standard RDB Templates

- 2 Terminal Line-Micro-R1.02.xlsm
- 3 Terminal Line-Micro-R1.02.xlsm
- DCB Scheme-2 Terminal Line-EM-R0.3.xlsm
- Grounded Voltage Differential Scheme-Shunt Capacitor-Micro-R0.2.xlsm
- High Impedance Diff-Bus-Micro-R0.1.xlsm
- B- HS-LS Lead Backup-Transformer-Micro-R0.2.xlsm
- Linear Coupler Bus Protection LC2 R0.1.xlsm
- Low Impedance Diff-Bus-Micro-R0.1.xIsm
- Primary & OA Diff Scheme-Transformer-Micro-R0.1.xIsm
- Standard Breaker Failure-Breaker-Micro Lev Sens Inputs-R1.0.xIsm
- System Backup-Transformer-Micro-R0.2.xlsm
- Transformer_Differential_EM-R0.3.xlsx
- Unbalance Scheme-Shunt Capacitor-Micro-R0.2.xIsm
- Zero Sequence OC Backup- Tranformer-Micro-R0.3.xlsm

- Breaker Failure SEL-501-0 R902-V65.rdb Breaker Failure-SEL-451-5 R323-V4-Z026.rdb DCB Fiber 2 Terminal Line-SEL-411L-0 R123-V1-Z014.rdb DCB Fiber 2 Terminal Line-SEL-411L-1 R123-V1-Z014.rdb DCB Fiber-2 Terminal Line-SEL-421-4 R326-V0-Z027.rdb DCB Fiber-2 Terminal Line-SEL-421-5 R323-V0-Z027.rdb DCB PLC-2 or 3 Terminal Line-SEL-411L-0 R123-V1-Z014.rdb DCB PLC-2 or 3 Terminal Line-SEL-411L-1 R123-V1-Z014.rdb 🛃 DCB PLC-2 or 3 Terminal Line-SEL-421-4 R326-V0-Z027.rdb DCB PLC-2 or 3 Terminal Line-SEL-421-5 R326-V0-Z027.rdb 🛃 Hi Imp Bus Diff-SEL-587Z R200-V0-Z001.rdb 🛃 Line Curr Diff-2 Terminal Line-SEL-411L-0 R123-V1-Z014.rdb Line Curr Diff-2 Terminal Line-SEL-411L-1 R123-V1-Z014.rdb Low Impedance Bus Diff SEL-487B R314-V0-Z014.rdb Transformer Diff-SEL-487E-3 R317-V1-Z110.rdb Transformer HS-LS LEAD SEL-421-4 R326-V0-Z027.rdb Transformer PR Diff-SEL-587-1 R704-V5b-Z001.rdb Transformer PR Diff-SEL-587-1 R800-Vxb-Z002.rdb Transformer Zero Seq OC-SEL-351A R514-Vf-Z105.RDB 🚰 Transformer Zero Seq OC-SEL-551 R514-Vf-Z002.RDB Transformer Zero Seg OC-SEL-551 R600-Vf-Z003.rdb Wye-Gnded Capacitor Bus-MidPoint Voltage Diff-SEL-487V-1 R107-V1-Z004.rdb
- Wye-Gnded Capacitor Bus-Neutral Voltage Diff-SEL-487V-1 R107-V1-Z004.rdb
- 🚰 Wye-Gnded Capacitor MidPoint-MidPoint Voltage Diff-SEL-487V-1 R107-V1-Z004.rdb

2-Terminal Line Micro Relay Setting Calculation Tool

Relay Setting Calculation Tools

<u>"Input Form" worksheet</u>

- Numeric and/or text type input fields for entering record-keeping, scheme-specific, impedance, short circuit, and relay settings data.
- Built-in formulas to auto-calculate settings based on guidance in criteria document and past practice, with final settings selected by the engineer
- Free form comment fields for the engineer to optionally add clarifying comments for selected settings, especially where the settings may reflect a deviation from typical settings
- Option to manually enter data, or where available, use built-in Excel macro button for importing CAPE data

"CAPE Studies & Misc Calcs" worksheet

Free form worksheet to copy/paste notes, your own calculations, or supporting documentation

FirstEnergy

Relay Setting Calculation Tools

"CAPE db Info" worksheet

- Documentation of the CAPE database used to calculate the settings
- Auto-populates using Get_Line_Data macro
- Manually populate by copy/pasting screenshots of CAPE Include/Exclude categories

Individual SEL relay worksheets

- Settings from the Input Form will auto populate into the relay setting list
- Engineer is expected to review and confirm settings in the list and where needed, manually enter remaining settings that are not automatically populated
- Excel macro button exports settings to a text file that can be imported into the standard RDB using AcSELerator
- Setting list formatted to enable future use of SEL Grid Configurator software that will allow for simple copy/paste of settings into RDB file

FirstEnergy.

Energy Association of PA – Electrical Equipment and Protection Committee Meeting April 25, 2023

Relay Setting Calculation Tools

Summary worksheet

- Imports settings from RDB file using macros
- Auto-Generates summary of the basic relay functions
- Provides a comparison of the RDB settings vs. the calculation tool settings

	Fairview East SS Gore Jct 115kV Line (PR/GJ)						
SUBSTATION:	Fairview East	DATE: 3/23/2023					
TERMINAL:	Gore Jct	APPLICATION:	APPLICATION: DCB				
VOLTAGE:	115kV	RELAY: SEL-421					
BREAKER 1:	B30	POWERBASE RLID:					
BREAKER 2:		PREPARED BY: Josh Counihan					
OPCO/REGION/AREA:	Penelec - North	APPROVED BY: Reviewer					
GENERAL COMMENTS:							
	RELAY	SETTINGS & DATA					
CT & PT RATIO	COMMENTS	LINE IMPEDANCE & LENGTH	LINE IMPEDANCE & LENGTH				
CT Ratio = 1200/5		Z1 = 4.42Ω Pri at 82.01°, Z1 = 1.06Ω Sec at 82.01°					
PTY Ratio = 1000:1		Z0 = 15.33Ω Pri at 74.18°, Z0 = 3.68Ω Sec at 74.18°					
TZ Ratio = 1000:1		Line Length = 6.1 miles					
MHO PHASE DISTANCE ELEMENTS		MHO GROUND DISTANCE ELEMENTS					
	Z1MP = 3.33Ω Pri, 0.8Ω Sec, (FWD); Z1PD = 0 Cycles		Z1MG = 2.92Ω Pri, 0.7Ω Sec, (FWD); Z1GD = 0 Cycles				
Z1MP = 3.33Ω Pri, 0.8Ω Sec, (F	WD), ZTI D = 0 Cycles	21110 - 2.32111, 0.112 300, (WD), 2100 - 0 Cycles				
Z1MP = 3.33Ω Pri, 0.8Ω Sec, (F Z2MP = 5.83Ω Pri, 1.4Ω Sec, (F	WD); Z2PD = 30 Cycles	Zone 2 Disabled	1100, 2100 - 0 Cycles				
Z1MP = 3.33Ω Pri, 0.8Ω Sec, (F Z2MP = 5.83Ω Pri, 1.4Ω Sec, (F Z3MP = 16.67Ω Pri, 4Ω Sec, (R	WD); Z2PD = 30 Cycles EV); Z3PD = OFF	Zone 2 Disabled Zone 3 Disabled	1105, 2105 - 0 Cycles				
Z1MP = 3.33Ω Pri, 0.8Ω Sec, (F Z2MP = 5.83Ω Pri, 1.4Ω Sec, (F Z3MP = 16.67Ω Pri, 4Ω Sec, (R Z4MP = 10.42Ω Pri, 2.5Ω Sec, (WD); Z2PD = 30 Cycles EV); Z3PD = 0FF (FWD); Z4PD = 60 Cycles	Zone 2 Disabled Zone 3 Disabled Zone 4 Disabled					
Z1MP = 3.33Ω Pri, 0.8Ω Sec, (F Z2MP = 5.83Ω Pri, 1.4Ω Sec, (F Z3MP = 16.67Ω Pri, 4Ω Sec, (R Z4MP = 10.42Ω Pri, 2.5Ω Sec, (RESIDUAL GROUND INSTANT	WD); Z2PD = 30 Cycles EV); Z3PD = 0FF (FWD); Z4PD = 60 Cycles ANEOUS OVERCURRENT	Zone 2 Disabled Zone 3 Disabled Zone 4 Disabled RESIDUAL GROUND INVERSE	TIME OVERCURRENT				
Z1MP = 3.33Ω Pri, 0.8Ω Sec, (F Z2MP = 5.83Ω Pri, 1.4Ω Sec, (F Z3MP = 16.67Ω Pri, 4Ω Sec, (R Z4MP = 10.42Ω Pri, 2.5Ω Sec, (RESIDUAL GROUND IN STANT 50G1P = 2736A Pri, 11.4A Sec	WD); Z2PD = 30 Cycles EV); Z2PD = 0FF (FWD); Z4PD = 60 Cycles ANEOUS OVERCURRENT ; 67G1TC = 1	Zone 2 Disabled Zone 3 Disabled Zone 4 Disabled RESIDUAL GROUND INVERSE 51510 = 30L; 5151P = 240A F	TIME OVERCURRENT Yri, 1A Sec				
Z1MP = 3.33Ω Pri, 0.8Ω Sec, (F Z2MP = 5.83Ω Pri, 1.4Ω Sec, (F Z3MP = 16.67Ω Pri, 4Ω Sec, (R Z4MP = 10.42Ω Pri, 2.5Ω Sec, (RESIDUAL GROUND INSTANT 50G1P = 2736A Pri, 11.4A Sec 50G2P = 240A Pri, 1A Sec; 670	WD); Z2PD = 30 Cycles EV); Z3PD = 0FF FWD); Z4PD = 60 Cycles ANEOUS OVERCURRENT ; 67G1TC = 1 32TC = 1	Zone 2 Disabled Zone 3 Disabled Zone 4 Disabled RESIDUAL GROUND INVERSE S1S10 = 30L; 51S1P = 240A F S1S1C = U2; 51S1TD = 1.5 (0.6	TIME OVERCURRENT 7ri, 1A Sec 54 seconds @ 5X pickup)				
Z1MP = 3.33Ω Pri, 0.8Ω Sec, (F Z2MP = 5.83Ω Pri, 1.4Ω Sec, (R Z3MP = 16.67Ω Pri, 4Ω Sec, (R Z4MP = 10.42Ω Pri, 2.5Ω Sec, (RESIDUAL GROUND INSTANT 50G1P = 2736A Pri, 11.4A Sec, 67 50G2P = 240A Pri, 14.8 Sec, 67 50G3P = 120A Pri, 0.5A Sec; 6	WD); Z2PD = 30 Cycles EV); Z3PD = 0FF (FWD); Z4PD = 60 Cycles ANEOUS OVERCURRENT ; 67G1TC = 1 27CT = 1 7G3TC = 1	Zone 2 Disabled Zone 3 Disabled Zone 4 Disabled RESIDUAL GROUND INVERSE S1S10 = 30L; 51S1P = 240A F S1S1C = U2; 51S1TD = 1.5 (0.0 S1S1RS = N; 51S1TC = 32GF (0.0)	TIME OVERCURRENT Yri, 1A Sec 34 seconds @ 5X pickup) DR LOP				
211MP = 3.330 Pri, 0.80 Sec, (F 22MP = 5.830 Pri, 1.40 Sec, (F 23MP = 16.670 Pri, 40 Sec, (R 24MP = 10.420 Pri, 2.50 Sec, (RESIDUAL GROUND INSTANT 50G1P = 2736A Pri, 11.4A Sec 50G2P = 240A Pri, 11.4 Sec, 67 50G3P = 120A Pri, 0.5A Sec; 6 TNIP SCHEME LOGIC	W0); 22PD = 30 Cycles EV); 23PD = 0FF (FWD); Z4PD = 60 Cycles AMEOUS OVERCURRENT ; 67G1TC = 1 32TC = 1 7G3TC = 1	Zone 2 Disabled Zone 3 Disabled Zone 4 Disabled RESIDUAL GROUND INVERSE 51510 = 30L; 5151P = 240A F 5151C = U2; 5151TD = 1.5 (0.6 5151RS = N; 5151TC = 326F (0.6)	TIME OVERCURRENT Yri, 1A Sec 34 seconds @ 5X pickup) JR LOP				
Z1MP = 3.330 Pri, 0.80 Sec, (F Z2MP = 5.830 Pri, 1.40 Sec, (F Z2MP = 16.870 Pri, 4.0 Sec, (R Z4MP = 10.420 Pri, 2.50 Sec, (RESIDUAL GROUND IN STANT SOGIP = 2736 APri, 11.4 AS ec 50G2P = 240A Pri, 14 Sec, 670 S0G3P = 120A Pri, 0.5A Sec, 6 TIMP SCHEME LOGIC TIR = Z1P 0R Z2PT 0R Z4PT 01	W0), Z2PD = 30 Cycles EV); Z3PD = 0FF (FVD); Z4PD = 60 Cycles ANEOUS OVERCURRENT ; 67G1TC = 1 32TC = 1 7G3TC = 1 R Z1G 0R 67G1 0R 51S1T	Zone 2 Disabled Zone 3 Disabled Zone 4 Disabled RESIDUAL GROUND INVERSE 51S10 = 30L; 51S1P = 240A F 51S1C = U2; 51S1TD = 1.5 (0. 51S1RS = N; 51S1TC = 32GF (TIME OVERCURRENT Ph, 1A Sec 34 seconds @ SX pickup) DR LOP				
21MP = 3.330 Pri, 0.80 Sec, (F 22MP = 5.830 Pri, 1.40 Sec, (F 22MP = 16.70 Pri, 40 Sec, (R 24MP = 10.420 Pri, 2.50 Sec, (RESIDUAL GROUND INSTANT 50G1P = 2736A Pri, 1.1 A Sec, 67 50G3P = 120A Pri, 1.1 A Sec, 67 50G3P = 120A Pri, 0.5A Sec, 6 TRIP SCHEME LOGIC TRIP SCHEME LOGIC TRIP SCHEME LOGIC TRE = 21P OR Z2PT O R Z4PT O TRCOMM = IN202 AND (Z2PGS	W0), Z2PD = 30 Cycles EV), Z3PD = 0FF (FWD), Z4PD = 60 Cycles AMEOUS OVERCURRENT (57G1TC = 1 32TC = 1 7G3TC = 1 R Z1G OR 67G1 OR 51S1T OR 67GQ2S)	Zone 2 Disabled Zone 3 Disabled Zone 4 Disabled RESIDUAL GROUND INVERSE 51510 = 30L; 5151P = 240.4 5151C = U2; 5151TP = 1.5 (0. 5151RS = N; 5151TC = 32GF (TIME OVERCURRENT Tr, 1A Sec 54 seconds @ 5X pickup) R LOP				
21MP = 3.330 Pri, 0.80 Sec, (F Z2MP = 5.830 Pri, 1.40 Sec, (F Z2MP = 16.670 Pri, 4.0 Sec, (R Z4MP = 10.420 Pri, 2.50 Sec, (RESIDUAL GROUND INSTANT SOGIP = 2736A Pri, 11.4A Sec; 67 SOG3P = 240A Pri, 1A Sec; 67 SOG3P = 120A Pri, 0.5A Sec; 6 TAIP SCHEME LOGIC TR = Z1P OR Z2PT OR Z4PT 01 TRCOMM = N202 AND (22POS TRSOTF = S0P1	W0), 22PD = 30 Cycles EV); 23PD = 0FF (FWD); 22PD = 0FF (FWD); Z4PD = 60 Cycles AMEOUS OVERCURRENT ; 67G1TC = 1 22TC = 1 7G3TC = 1 R Z1G OR 67G1 OR 51S1T OR 67OG2S)	Zone 2 Disabled Zone 3 Disabled Zone 4 Disabled RESIDUAL GROUND INVERSE 51510 = 30L; 5151P = 240A 5151C = U2; 5151TP = 1.5 (0.4 5151RS = N; 5151TC = 32GF (TIME OVERCURRENT Yi, 1A Sec 34 seconds @ 5X pickup) R LOP				
21MP - 3.330 Pri, 0.80 Sec, (F Z2MP - 5.830 Pri, 1.40 Sec, (F Z2MP - 16.70 Pri, 4.0 Sec, (R Z4MP - 10.420 Pri, 2.50 Sec, (RESIDUAL GROUND INSTANT 50GIP - 2736A Pri, 11.4 A Sec, 670 50G2P - 240A Pri, 14. Sec, 670 50G3P - 120A Pri, 0.5A Sec, 6 TMP SCHEME LOGIC TR - 21P OR Z2PT OR Z4PT 01 TRCOMT - 1022 AND (Z2PGS TRSOTF - 50P1 SWITCH ONTO FAULT	W0); 22PD = 30 Cycles EV); 23PD = 0FF (FWD); Z4PD = 60 Cycles AMEOUS OVERCURRENT ; 67G1TC = 1 22TC = 1 7G3TC = 1 R Z1G OR 67G1 OR 51S1T OR 67GG2S)	Zone 2 Disabled Zone 3 Disabled Zone 4 Disabled RESIDUAL GROUND INVERSE 51S10 = 30L; 51S1P = 240A F 51S1C = U2; 51S1TD = 1.5 (0.4 51S1RS = N; 51S1TC = 32GF (0.5)	TIME OVERCURRENT Yri, 1A Sec 34 seconds @ 5X pickup) DR LOP				

SEL-421						
	.rdb Setting	Calc Tool Setting	Match?	Comments		
SID	Fairview East SS	Fairview East SS	Yes			
RID	Gore Jct 115kV Line (PR/GJ)	Gore Jct 115kV Line (PR/GJ)	Yes			
CONAM	PNS	PNS	Yes			
NUMBK	1	1	Yes			
BID1	B30	B30	Yes			
BID2	0	0	Yes			
PHROT	ABC	ABC	Yes			
ESS	N	N	Yes			
LINEI	IW	IW	Yes			
BK1I	IW	IW	Yes			
BK2I	NA	NA	Yes			
IRIGC	NONE	None	Yes			
CTRW	240	240	Yes			
CTRX	240	240	Yes			
PTRY	1000	1000	Yes			
VNOMY	115	115.0	Yes			
PTRZ	1000	1000	Yes			
VNOMZ	115	115.0	Yes			
Z1MAG	1.06	1.06	Yes			
Z1ANG	82.01	82.01	Yes			
ZOMAG	3.68	3.68	Yes			
ZOANG	74.18	74.18	Yes			
	51	51	Vec			

Energy Association of PA – Electrical Equipment and Protection Committee Meeting

April 25, 2023

Get Line Data Macro

PSS-CAPE Macro using CUPL code

Pulls information from CAPE

- Line Impedances/Lengths
- Fault Currents for Relevant Faults
- Apparent Impedances for Faults on Taps
- Mutually Coupled Lines

Produces output .txt files

- "Line Data" file that can be imported into Calculation Tools
- "Additional Data" file containing full listing of data compiled by the macro that may be truncated in the "Line Data" file for use in the Tools

Energy Association of PA – Electrical Equipment and Protection Committee Meeting Apr

April 25, 2023

11