

We Deliver.

Driving Forward with Condition Based Maintenance

Brandon Gustafson – System Maintenance Senior Engineer PPL Electric Utilities

Transformer #2 Oil Results

● DGA		
Hydrogen (H2)	7.2	μL/L (ppm)
Oxygen (O2)	440.0	μL/L (ppm)
Nitrogen (N2)	75000.0	μL/L (ppm)
Methane (CH4)	8.26	μL/L (ppm)
Carbon Monoxide (CO)	34.9	μL/L (ppm)
Carbon Dioxide (CO2)	1053.0	μL/L (ppm)
Ethylene (C2H4)	4.5	μL/L (ppm)
Ethane (C2H6)	4.2	μL/L (ppm)
Acetylene (C2H2)	4.1	μL/L (ppm)
Propane (C3H8)		μL/L (ppm)
Propylene (C3H6)		μL/L (ppm)
Total gas	76556.0	%
TCG (headspace or relay)		%

● DGA		
Hydrogen (H2)	158.1	μL/L (ppm)
Oxygen (O2)	782.0	μL/L (ppm)
Nitrogen (N2)	55700.0	μL/L (ppm)
Methane (CH4)	50.0	μL/L (ppm)
Carbon Monoxide (CO)	27.3	μL/L (ppm)
Carbon Dioxide (CO2)	914.0	μL/L (ppm)
Ethylene (C2H4)	77.3	μL/L (ppm)
Ethane (C2H6)	9.3	μL/L (ppm)
Acetylene (C2H2)	190.1	μL/L (ppm)
Propane (C3H8)		μL/L (ppm)
Propylene (C3H6)		μL/L (ppm)
Total gas	57908.0	%
TCG (headspace or relay)		%

Transformer Inspection Findings

- Electrical Testing was completed
 - Concerns with the results of the core ground test as well as DC winding resistance test
- Internal inspection of the transformer performed
 - Deteriorated core ground

The Ask: Continue to drive down operating cost without risking failure or reliability

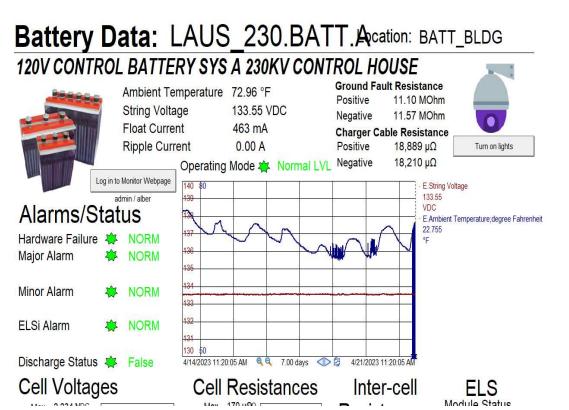
- Time-based maintenance plan cost exceeding yearly budget
- How can we reduce cost without increasing risk?
 - Focus in on the need to have maintenance
 - Ensure correct maintenance is being completed
 - Do not just rely on past practices
 - Utilizing all available data to drive priority

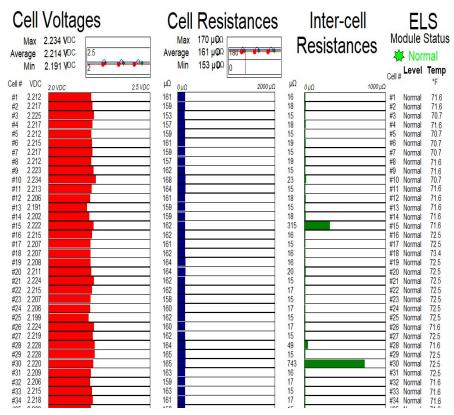
Completely time-based maintenance schedule

 Only condition based completed was as result of time-based maintenance

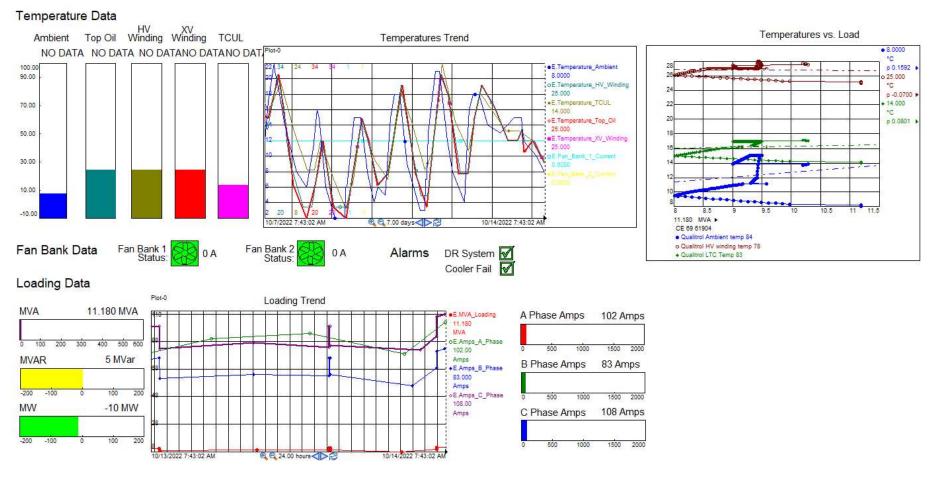
First Steps into Data Driven Condition Based Maintenance

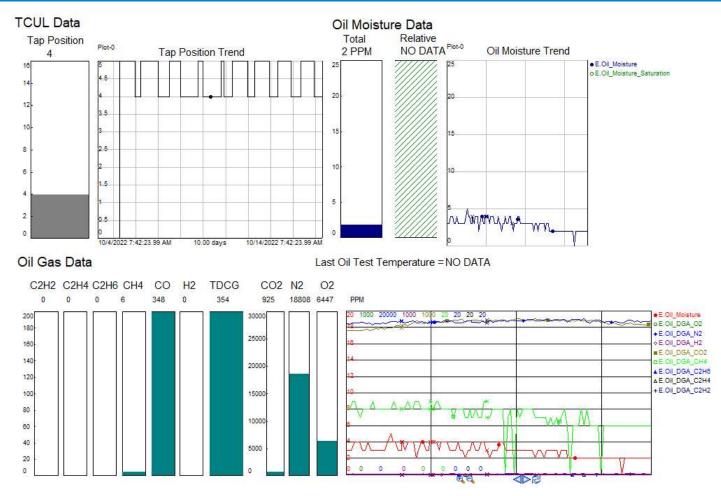
- Review completed of all breaker models and maintenance triggers created based on manufacture suggested operation counts
- TCUL maintenance triggers also developed based on operation count
- Hesitation of these approaches led us to keep a time component as part of the trigger


Where we are going


- Monitoring installed on all major equipment types
 - Dashboard for real time health index to drive future maintenance and replacements
 - Alarming and Alerts in place to have round the clock oversight
- Fully condition based maintenance program

Battery Monitor Display




Transformer Monitoring Display

Transformer Monitoring Display

CB Monitoring Display

SFLD.CB.BUXM 2 SF6 CB Monitor

Log in to Monitor Webpage

https://10.85.0.26

Load Current Last Arc Time

Last Interrupt Time Contact Life

Contact Wear I2T

212 Amps

20 mS

20 mS

90 %

13,436,905 A2Sec

199 Amps

20 mS

20 mS

90 %

12,800,000 A2Sec

213 Amps

20 mS

20 mS

90 %

12,800,000 A2Sec

Open Live Camera View

Alarms

Alarm Relay

Close Time Alarm

Close Travel Time Alarm

Open Time Alarm

Open Travel Time Alarm

Op Metrics

Non-Fault Interrupt Count Fault Interrupt Count

Operation Number Op was a Fault

Op was an Interrupt Close Time

Close Travel Time Open Time

Open Travel Time

211

False

14 mS

20 mS

19 373 Days Since Last Op

Last Operation Metrics:

False 34 mS

Charge Motor Metrics

Charge Motor Current Avg Time Between Run Avg Run Time

Avg Run Frequency **Total Run Time**

0 Amps 202 Hours 6 Seconds 0.00 Runs/Day

0.04 Runs

A-B Logic Alarm

SF6 Data

SF6 Sensor Status

SF6 Low Gas

SF6 Gas Trend SF6 Gas Forecast

Pressure

Pressure Trend

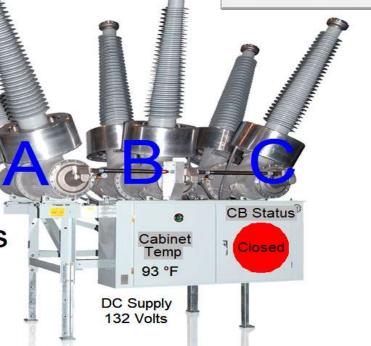
Trend Confidence

Density **Density Trend**

Mass Loss

202041-Corporation

Low Gas Forecast


65.92 PSIG

-0.01 PSIG/Day

98 %

2.23 lb/ft3

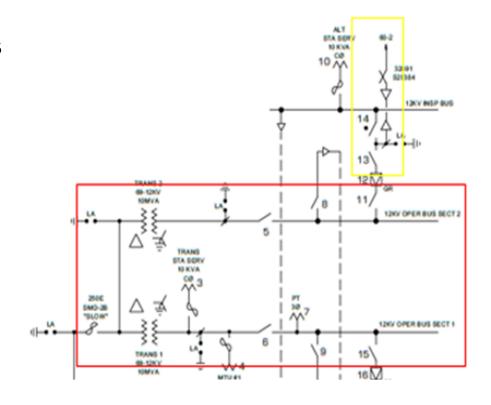
0.00 lb/ft3/day

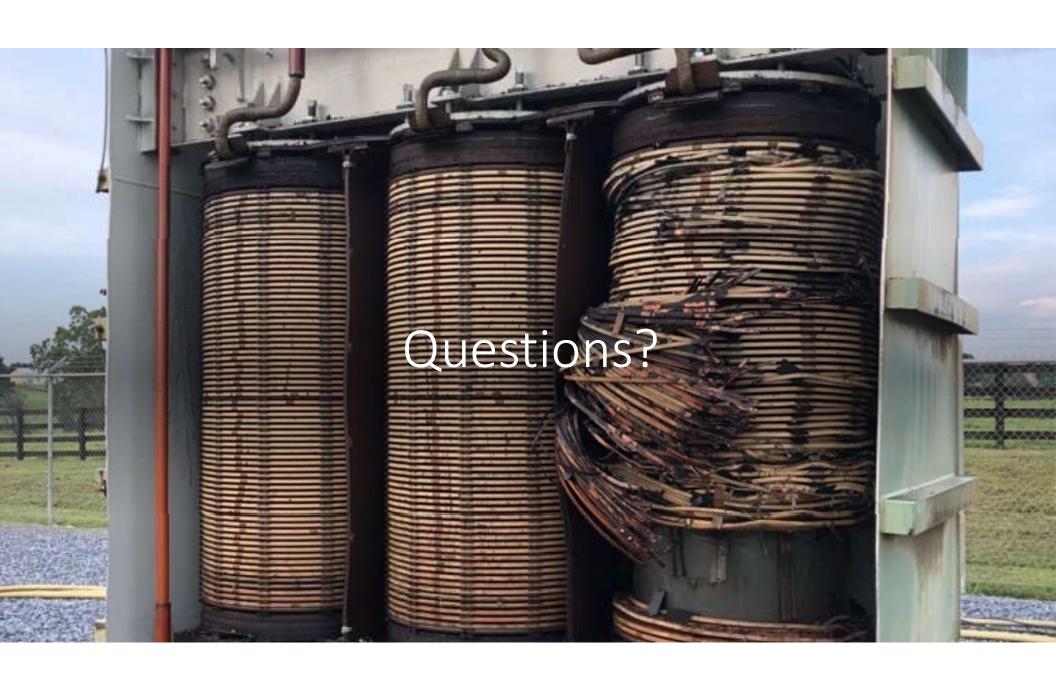
Additional Monitoring

- PT and CCVT Monitoring
 - Predictive algorithms created to flag voltage abnormalities coming back through Pl
- Air Break and Disconnect
 - Exercise and maintain stagnant disconnects

Monitoring Challenges

- Proper setup to ensure that data being collected is accurate and desirable
- Understanding the data being brought back
- Alert and Alarm setup
 - Critique to fit companies needs
- Upkeep of additional components now on the system





Other Sources of Data

- Due to the advancing age of most utilities' infrastructure, it is crucial that maintenance and replacement decisions are based off the best available data
- Other data sources:
 - Sub configuration
 - Stranded load
 - Customer count
 - Unit age
 - Inspection data
 - Past DGA results

