Jeffrey C. Wright, P.E., Consulting Engineer, Asset Management, Duquesne Light Co.



#### Strategy Development

- Data Requirements:
  - List of in-service power transformers and their parameters.
  - Inventory of available spare transformers, their locations, and condition.
- Considerations for Evaluating Sparing Needs and Risks:
  - Failure history for specific populations of transformers.
  - Number of transformers in each population.
  - Lead time for replacement.
- Example/Case Study



**Data Requirements** 

- A list of in-service power transformers and available spares must be developed. Can be downloaded from maintenance software.
- The list must contain the necessary parameters to match spares with inservice units, including but not limited to:
  - KVA Rating
  - # of Phases
  - Voltage Ratings
  - Connection
  - Cooling Class & Temperature Rise
  - Impedance
  - LTC vs. non-LTC
  - Location
  - Vintage and Condition
- The list must be maintained up-to-date.



Data Requirements

- Available spares must be matched with corresponding in-service transformers to identify gaps where additional spares are needed.
- Levels of Matching:
  - Exact match
  - Close match; examples:
    - Impedance mismatch
    - KVA mismatch
    - LTC mismatch
  - No match spare needs to be ordered
- Mobile transformers must be available as temporary spares in the event of a failure, if system planning cannot divert power to other units, until a permanent replacement can be installed.



#### **Additional Considerations**

- Locations of Spares:
  - In Service Spare a unit that can carry the full load of another unit that fails. Doubleredundant. Immediate replacement or mobile transformer not required.
  - Out of Service Spare:
    - Local in the same station. Minimal or no transportation or assembly required for installation.
    - Remote in another location. Transportation and possible disassembly and oil handling required for installation. Transportation plans should be developed for large units requiring heavy haul vehicles and permits.
    - Remote condition unknown, untested, parts missing.
- Outside Sources:
  - Other Utilities
  - Used Equipment Brokers
  - Equipment Sparing Programs mutual transformer sharing agreements to purchase spare units from other member utilities if qualifying events exhaust in-house spares in specific voltage classes. Step/Restore. Exact matching may not be achievable and must be evaluated.



Risk Analysis Case Study

To determine the risk of being without a spare following a failure that occurred in 2019, DLC reviewed the historical failure data for the specific population of transformers and performed a statistical analysis as follows:

#### Population Statistics

- 33 transformers of varying vintages from 1964 thru 2011.
- Average vintage = 1993.
- Average age at the time of the failure = (2019 1993) = 26 years.



#### Risk Analysis Case Study

|                                                                 | Population   | n Failure Histor   | <u>y (1999 – 2019</u> | )                    |
|-----------------------------------------------------------------|--------------|--------------------|-----------------------|----------------------|
|                                                                 | Year         | Year               | Service Age           |                      |
| <u>Location</u>                                                 | Failed       | Installed          | at Failure            |                      |
| Bank #1                                                         | 2019         | 1970               | 49 years              |                      |
| Bank #2                                                         | 2017         | 1979               | 38"                   |                      |
| Bank #3                                                         | 2008         | 1972               | 36 "                  |                      |
| Bank #4                                                         | 2007         | 1984               | 23 "                  |                      |
| Bank #5                                                         | 2006         | 1987               | 19"                   |                      |
| Bank #6                                                         | 2004         | 1970               | 34 "                  |                      |
| Bank #7                                                         | 10/1999      | 1961               | 38"                   |                      |
| Bank #8                                                         | 05/1999      | 1976               | 23 "                  |                      |
| Average age at time of fa                                       | ailure =     |                    | 32.5 years;           | Std. Dev. = 10 years |
| Times between failures = 2, 9, 1, 1, 2, 4.5 & 0.5 years         |              |                    |                       |                      |
| Average time between fa                                         | ailures = (2 | +9+1+1+2+4.5       | +0.5) / 7 = 2.9       | /ears                |
| Standard deviation of tim                                       | ne betweer   | n failures = 3.0 y | years                 |                      |
| On average 1 spare of this type will be needed every 2.9 years. |              |                    |                       |                      |



#### Risk Analysis Case Study

• Using the average and the standard deviation of the time between failures the Probability Distributions of future failures were plotted as follows:





**Risk Analysis Case Study** 

Single (1) Spare Scenario – One transformer in the population fails and is replaced by a lone spare unit, placing us at risk for additional failures, without a spare, during the 1-year lead time that it took to procure and install a replacement spare at that time.

The cumulative risk of additional failures during the 1-year lead time was calculated by integrating the above Probability Distributions from the date of the failure, at time = 0, to a point 1 year after the failure.



#### Risk Analysis Case Study

The cumulative probabilities of additional failures during the 1-year lead time were calculated as follows:

The probability of a 2<sup>nd</sup> failure = P(-0.63 $\sigma$ ) – P(-0.97 $\sigma$ ) = 0.264 – 0.166 = 0.098 The probability of a 3<sup>rd</sup> failure = P(-1.60 $\sigma$ ) – P(-1.93 $\sigma$ ) = 0.055 – 0.027 = 0.028 The probability of a 4<sup>th</sup> failure = P(-2.57 $\sigma$ ) – P(-2.90 $\sigma$ ) = 0.005 – 0.002 = <u>0.003</u> The sum of the above probabilities = 0.129

<u>Conclusion</u>: For the Single-Spare Scenario, the risk of additional failures, without a spare, during the 1-year lead time = 12.9%Recommendations:

- If a loan spare is used to replace a failed unit, a replacement spare should be ordered as soon as possible.
- To further reduce the risk of not having a spare available in the event of a failure of a lone spare, a 2nd spare of this type should be ordered.



**Risk Analysis Case Study** 

<u>Two (2) Spare Scenario</u> - One transformer fails and is replaced by one spare unit, and a 2<sup>nd</sup> unit also fails at the same time and is replaced by the 2<sup>nd</sup> spare, placing us at risk for additional failures, without a spare, during the 1-year lead time that it takes to procure replacement spares. The cumulative risk of additional failures during the 1-year lead time was re-calculated as described above:

The probability of a 3<sup>rd</sup> failure = P(-1.60 $\sigma$ ) – P(-1.93 $\sigma$ ) = 0.055 – 0.027 = 0.028 The probability of a 4<sup>th</sup> failure = P(-2.57 $\sigma$ ) – P(-2.90 $\sigma$ ) = 0.005 – 0.002 = <u>0.003</u> The sum of the above probabilities = 0.031

#### Conclusions:

- For the 2-Spare Scenario, the risk of additional failures, without a spare, during the 1-year lead time = 3.1%
- Having a 2<sup>nd</sup> spare available reduces the risk of additional failures from 12.9% to 3.1%, <u>a 9.8% risk reduction</u>.



#### **Risk Analysis Case Study**

## Further Recommendations:

- This analysis should be performed on other populations of transformers for the following reasons:
  - Failure rates may vary from one populations to another.
  - Failure rates will vary in proportion to the number of units in the population.
- This analysis should be updated each time that a failure occurs.
- This analysis should be updated if the lead time for replacement changes.



#### Bibliography

[1] Bartley, William H., P.E., "Analysis of Transformer Failures", International Association of Engineering Insurers, 36<sup>th</sup> Annual Conference, Stockholm, 2003.

[2] Bartley, William H., P.E., "Failure History of Transformers – Theoretical Projections for Random Variables", TJH<sub>2</sub>B, Tech Con, 2001



## **Questions / Discussion**

